If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-184=0
a = 1; b = 0; c = -184;
Δ = b2-4ac
Δ = 02-4·1·(-184)
Δ = 736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{736}=\sqrt{16*46}=\sqrt{16}*\sqrt{46}=4\sqrt{46}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{46}}{2*1}=\frac{0-4\sqrt{46}}{2} =-\frac{4\sqrt{46}}{2} =-2\sqrt{46} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{46}}{2*1}=\frac{0+4\sqrt{46}}{2} =\frac{4\sqrt{46}}{2} =2\sqrt{46} $
| -4v-8=-8(v+3) | | -5(x-2)=-3x+24 | | 14-4(2k+4)=-2(4-3k | | 3x-2+9x-26=x | | 4r+1=3r+7 | | -21+5x=15-x | | -7y+25=-5(y-3) | | 80/40=160/x | | y=3(-3)^2+2(-3) | | -11+2f=-5 | | -2=2y+7(y-8) | | -4v+2(v+2)=-4 | | 5(x-4)+3=33 | | y=4(6)-22 | | x=350/7/3 | | 13+x=-36-6x | | 4x+59=11 | | 224=-u+135 | | y=4(3)-22 | | 13+x=-36–6x | | -9x+9=720 | | 8=37+x | | 1-y=(-18) | | -20(a-20)=560 | | X^2+x=96 | | 63-6x=2x-49 | | 2p-4=18+6p | | 9x-63=63 | | X-15x=17000(100) | | 2-e/13=5 | | X+x1+x2=126 | | 8x-8=4+12 |